Does Lyndon’s Lenth Function Imply

Imply the Universal Theory of Free Groups?
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ABSTRACT. This note shows that every model of the universal
theory of the non-Abelian free groups admits a Lyndon length
function. The question is then posed as to whether the model
class of the universal theory of the non-Abelian free groups is
precisely the class of such groups. The authors have subse-
quently given a negative answer to this question.

Definitions and notation will be that of Bell and Slomson [3], and of
Gaglione and Spellman [6], [7] and [8].

Let L be a first-order language with equality. Two
L-structures A and B have the same universal theory just in case they satisfy
precisely the same universal sentences (and therefore also precisely the same
existential sentences) of L. If B is an L-structure, let Th(B) N (V U 3) be the
set of all universal and existential sentences of L true in B. Evidently the L-
structure A has the same universal theory as B if and only if A is a model of
Th(B)N (YU 3).

If A is a substructure of the L-structure B, then a necessary and sufficient
condition that A and B have the same universal theory is that there be a model
*A of
Th(A) N (YU 3) such that A C B C xA. This in turn is equivalent to the
existence of an index set I and an ultrafilter D on I such that B is embeddable
in the ultrapower A7/D. A different necessary and sufficient condition that an
L-structure B and a substructure A have the same universal theory is that A
and B satisfy precisely the same primitive sentences of L. (See [3],Ch.9.)

Let A be a non-trivial, torsion-free, Abelian group. Let < be a strict
linear order on A such that for arbitrary (a,b,c) € A% we have a+c < b+ ¢
whenever a < b. Then the ordered pair A = (4,<) is an ordered Abelian
group. A non-trivial, torsion-free, Abelian group A is orderable provided there
is at least one strict linear order < such that A = (A4, <) is an ordered Abelian

group. It is well-known that every non-trivial, torsion-free, Abelian group is
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orderable. None the less, we’ll present an argument to that effect in this paper.
We shall also show the well-known result that this class of Abelian groups is
the class having the same universal theory as Z; moreover, we show that every
model of the universal theory of the non-Abelian free groups admits a Lyndon
length function.

We now specify two first-order languages with equality. L, shall contain
a binary operation symbol -, @ unary operation symbol ~'and a constant symbol
1.L shall contain a binary operation symbol +, a unary operation symbol -, a
constant symbol 0 and a binary relation symbol < .L, shall be the language of
group theory and L shall be the language of ordered Abelian groups. A primitive

sentence of L, is one of the form

A(kp:() = PO ) # Qi)

where T is a tuple of variables and the p;(x), P;i(x),q;(x) and @Q;(z) are terms
of L,.
In case the L,-structures we are considering are groups

this type of sentence may be simplified to one of the form

A(Np:i() = DIg; 0 # 1)

where T = (z1,... ,2n,) is a tuple of distinct variables and the p;(Z) and ¢;(T)

are words on {z1,... ,Zm}U{z1,... ,Zm}.

LEMMA 1. A non-trivial Abelian group A has the same universal theory as Z

if and only if A is torsion-free.

PROOF. One implication is trivial. Assume A is a non-trivial, torsion-free,
Abelian group to show that A is a model of

Th(Z) N (VU 3J). We write our groups additively here. Let a be a non-zero
element of A and put Ag =< a > Z. It will suffice to show that A, satisfies

every primitive sentence true in A. To that end consider the system

()

of equations and inequations. Suppose (*) has a solution (x1,...,%,) =

(a1,--- ,am) in A. Tt suffices to show that (*) has a solution in Aq. Let B be



the subgroup of A generated by {ai1,...,an}. If B =0, then (z1,... ,2,) =
(0,...,0) is a solution to (*) in Ag. We may therefore assume B # 0. So B
is then a non- trivial, finitely generated, torsion free, Abelian group. Thus, B
is free Abelian of some finite rank r > 1. But it was shown in Gaglione and
Spellman [7] that Z" and Z have the same universal theory. Therefore (*) has

a solution in Ay.H

DEFINITION 1 (Lyndon [12]). Let G be a (multiplicatively written) group.
Let A = (A4,<) be an (additively written) ordered Abelian group. Let A :
G —— A,gl=| g | be a function and let

2¢ : G2 —— A be defined by (g1,92) |- g1 | + | g2 | — | 9192 |- The the
ordered triple (G, A, \) is a normed group provided the following six axioms are
satisfied:
(A0)z # 1 implies | z |<| 2* |
(Al) |z |>0and |z |=0iff x =1

(42) | a7 |=| = |

(A3)2¢(z,y) >0

(A4)2¢(z,y) > 2¢(z, z) implies 2¢(y, z) = 2¢(z, 2)

(CO)2¢(z,y) = 0(mod2A)

A group G is normable provided there is at least one ordered Abelian group
A = (A, <) and at least one map A : G —— A such that (G, A, A) is a normed
group.

REMARK. The axioms are not independent. Chiswell [5] has shown that (A3)
is a consequence of (A2),(A4) and the following (A1) | 1 |=0.

If S is a set of sentences of a first-order language L with equality, let M(S)
be the model class of S.

THEOREM 1. Let L be a first-order language with equality. Let X be a class
of L-structures. Then the following three properties form a set of necessary
and sufficient conditions that X be of the form M(S) for at least one set S of
sentences of L:

(i) X is closed under isomorphism.

(il) X is closed under the formation of ultraproducts.



(iil) If cX is the class of all L-structures not in X, then cX is closed under

the formation of ultrapowers.

Thoerem 1 is a deduction of Theorem 3.10, Chapter 7 of [3] without assuming
(G.C.H.) using the Keisler-Shelah Theorem. (See [3] and [15].)

Although ”the” norm is not generally defined in L,, norms are internal
in the sense that they extend to ultraproducts. It is then straightforward to

deduce -

COROLLARY. The class of all non-Abelian, normable groups is the model class
IMIO) of some set © of sentences of L,.

It is known that the non-Abelian free groups have the same universal
theory (see [7]). Thus, if F» is free of rank 2 and & = Th(F, N (VU 3), then
every non-Abelian, free group is a model of ®. Tt is not difficult to convince
oneself that the models of ¢ are precisely those non-Abelian groups embeddable
in some ultrapower of F5, since one can easily show that every model of &
contains a copy of F». But if F5 =< aj,as >, then the length function with
respect to the free basis {a1, a2},

A : F; —— 7 induces a length function *\ : F,/D —— Z!/D making
(F»/D,(Z!/D, <), *)) into a normed group whenever I is an index set and D
is an ultrafilter on I. The restriction of %A to the subgroup G makes G into a

normed group. Thus, every model of ® is also a model of ©. In symbols -
THEOREM 2. M(®) C M(0).

Brignole and Ribeiro [4] have given a proof of a theorem of Gurevic
and Kokorin asserting that any two ordered Abelian groups have the same
universal theory. Since any ordered Abelian group A = (A, <) contains an
ordered subgroup isomorphic to (Z, <) it follows that every ordered Abelian

group A is embeddable in some ultrapower
(Z,<)'/D = (2"/D,<).

Thus, every normed group admits a norm with values in an ordered Abelian

group of the form (Z1/D, <).



Let L be a first-order language with equality. A sentence of L of the
form VZ3y¢(T,y) where T and 7 are disjoint tuples of variables, ¢(T,7) con-
tains no quantifiers and ¢(Z,y) contains free at most the variables in T and ¥ is
a universal-existential sentence of L. Any sentence of L logically equivalent to a
universal-existential sentence of L is a},-sentence of L. Since vacuous quantifica-
tions are permitted, every universal sentence of L and every existential sentence

of L is also a],-sentence of L.
THEOREM 3. © may be taken to be a set of |,-sentences of L,.

PROOF. In view of Theorem 2, p. 279 of Gritzer [10], it suffices to show

that the union G = |, Gn of a chain (G)n<w of non- Abelian, normable

n<w
subgroups Go C Gy C ... C G, C ... is normable. To that end suppose that
(Gn, An, \pn) is a normed group. Let D be a non-principal ultrafilter on w and
let A =

(ITh<w An)/D be the ultraproduct of the family (Ay)n<. of ordered Abelian
groups with respect to the ultrafilter D. Let A = (A, <). For each g € G, let
deg(g) = min{n € w | geG,}. Finally, let

A:G —— A be given by g |» L,/D where
Then it is straightforward to verify that (G, A, ) is a normed group.H
QUESTION. Is M(®) = M(0) ?

Equivalently: Does every non-Abelian, normable group have the same universal

theory as the non-Abelian free groups?

In view of (5.3), (5.4)(6.4) of Alperin and Bass [1], we may also pose the

QUESTION. Let G be a non-Abelian group. Is it the case that G is a model of
® if and only if there is an ordered Abelian group A and aA-tree T such that G
acts freely on A without inversions?
(i.e., if and only if G is tree-free in the sense of Bass - see [2].)
Addendum
Since the original preparation of the manuscript, the authors have learned

of [14]. In that work, Remeslennikov also shows that every model of ® is



6

normable. Moeover, a negative answer to our question is given independently
in [9] and in [14].
The authors wish to thank the referee for helpful comments.
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